Serial phishing a Mac OS X application for newbies

(c) 2009 Fractal Guru (reverse AT put.as , http://reverse.put.as)

Target: MacDviX (http://www.kiffe.com/textools.html)
Tools used: OTX, GDB, OxED

Platform: Mac 0OS X Leopard 10.5.6 @ Intel x86
Document version: 1.0 (23/02/2008)

Index:

0 - Introduction

1 - Attacking our target
2 - Conclusion

0 - Introduction

Again by popular demand, let's learn how to phish a serial number (and keygen) from a
simple application.

This target was suggested by an user and great target it is for our learning purposes !
It's serial algorithm is very easy and you can even patch it if you want (I will leave
that as an exercise

so you can improve your skills!).

And now, let's start the fun !
fG!

1 - Attacking our target

Since you should already master gdb and otx from previous tutorial, we are going
directly to our target.

As usual, the first approach is to understand the protection behaviour and what hints we
might get so we can start working.

Load the application, and the first thing you get is a nag message box with a timer,
telling you should input a password.
After the timer runs out, try to insert some password like our beloved 1234567890.

You will get a "Invalid entry." message. Fair enough, looks like a good hint.

Disassemble the main binary with OTX and search for that specific message, "Invalid
entry". There is a single hit ! Hummm looks good!
Let me show you that piece of code (line numbers added for easy code reference):

(-..)

1: 0000e837 e8441a0400 calll 0x00050280

_strcpy

2: 0000e83c 891c24 movl %ebx, (%esp)

3: 0000e83f e84ffaffff calll _CheckPassword

4: 0000e844 84cO testb %al, %sal

5: 0000e846 754a jne 0x0000e892

6: 0000e848 c744240403000000 movl $0x00000003,0x04 (%esp)
7: 0000e850 893424 movl %esi, (%esp)

8: 0000e853 e864e4dffff calll _SelectEditData

9: 0000e858 ¢744241038cd0200 movl $0x0002cd38,0x10(%esp)
Invalid entry.

(-..)

Even without starting to understand this piece of code, you should have already spotted
an interesting call, the one to _CheckPassword.
So, we have a call to some function named CheckPassword, then we have a decision (testb,



jne combination).

bad serial message being moved into the stack.
We can try to assume that if that JINE is executed we might get a good serial message.
Assuming this, we might want to place our serial phishing bet

into the CheckPassword function, because it should be the one responsable for serial
number verification.

Let's find the disassembly for this function.
There are four hits and you can easily find the code for it.
Here it is:

55

89e5

57

8b5508
85d2

7427

8947

fc
boffffffff
b800000000
f2ae
83f9f7
7513
807a022a

750d
807a0540

7507
b801000000
eb05
b800000000
5f

5d

_CheckPassword:
1: 0000e293
2: 0000e294
3: 0000e296
4: 0000e297
5: 0000e29a
6: 0000e29c
7: 0000e29e
8: 0000e2a0
9: 0000e2al
10: 0000e2ab
11: 0000e2ab
12: 0000e2ad
13: 0000e2b0
14: 0000e2b2
Ve

15: 0000e2b6
16: 0000e2b8
!

17: 0000e2bc
18: 0000e2be
19: 0000e2c3
20: 0000e2c5
21: 0000e2ca
22: 0000e2ch
23: 0000e2cc

c3

If the jump isn't executed, we find our

Search the otx output for _CheckPassword.

movl
movl

movl

movl

pushl $ebp

movl %esp, sebp

pushl $edi

movl 0x08 (%ebp), %edx
testl $edx, sedx

je 0x0000e2c5

movl $edx, sedi

cld

SOxffffffff, secx
$0x00000000, %eax
repnz/scasb %al, (%edi)

cmpl $0xf7,%ecx

jne 0x0000e2c5

cmpb $0x2a,0x02 (%edx)

jne 0x0000e2c5

cmpb $0x40,0x05 (%edx)

jne 0x0000e2c5
$0x00000001, %eax

jmp 0x0000e2ca
$0x00000000, %eax

popl $edi

popl $ebp

ret

Load the application into gdb and set a breakpoint at 0xe293 (where it begins).
Start the application, wait for the timer and insert 1234567890 as password.
Our breakpoint should be enforced and gdb stops at 0xe293.

This is what we get:
Breakpoint 1,

0x0000e293 in CheckPassword ()

EAX: 00000000 EBX: 0001685C ECX:

ESI: 00045790 EDI: 000458D0 EBP:

CS: 0017 Ds: O001lF ES: OOlF Fs:
[001F:BFFFF57C]
BFFFF5CC : 00 00 00 00 00 00 00 OO
BFFFF5BC : 00 00 00 00 00 00 00 0O
BFFFF5AC : 00 00 00 00 00 00 00 OO
BFFFF59C : 97 23 01 00 05 00 00 00
BFFFF58C : 5C 68 01 00 90 57 04 00
BFFFF57C : 76 E2 00 00 00 00 00 0O
[0017:0000E293]
0xe293 <CheckPassword>: push ebp
0xe294 <CheckPassword+1>: mov
0xe296 <CheckPassword+3>: push
0xe297 <CheckPassword+4>: mov
0xe29a <CheckPassword+7>: test
0xe29c <CheckPassword+9>: je
0xe29e <CheckPassword+11>: mov

0xe2c5 <CheckPassword+50>
edi,edx

[regs]
00000004 EDX: 65747267 o d I t S z a P c
BFFFF598 ESP: BFFFF57C EIP: 0000E293
0000 GS: 0037 SSs: 001lF
—————————————————————————————————————————————————————————— [stack]
- 00 00 00 00 00 00 00 00 +eveeeeenoecnnns
- 00 00 00 00 00 00 00 00 .evveeenneecnnns
- 00 00 00 00 00 00 00 00 .evveeenneecnnns
- CO 16 03 00 00 00 00 00 #.eeeeeeeenosnn
- DO 58 04 00 D8 F7 FF BF \h...W...X......
- 5C 68 01 00 2D 6C 6F 96 V.eeueunonn \h..-lo.
——————————————————————————————————————————————————————————— [code]
ebp,esp
edi
edx,DWORD PTR [ebp+0x8] <- interesting
edx,edx <- interesting

<- interesting



0xe2a0 <CheckPassword+13>:

This first interesting lines are 4, 5 and 6. Step until you reach address 0xe29a (line
5).
0x0000e29a in CheckPassword ()
—————————————————————————————————————————————————————————————————————————— [regs]
EAX: BFFFDAF0O EBX: BFFFDCF0 ECX: BFFFDD00O EDX: BFFFDCFO o d I t s Z a P c
ESI: 00192400 EDI: 00000000 EBP: BFFFDAB8 ESP: BFFFDAB4 0000E29A
CS: 0017 DS: 00lF ES: O0lF FS: 0000 GS: 0037 SS: 001lF
[001F :BFFFDAB4 J————— == m m o oo o [stack]
BFFFDB04 : 00 00 00 00 74 72 70 63 - 74 00 00 00 FO Bl 18 ..trpct.......
BFFFDAF4 : 35 36 37 38 39 30 00 00 - 8E BE 87 00 30 AC 19 00 567890...... 0...
BFFFDAE4 : 00 00 00 00 18 DB FF BF - OA 00 00 00 31 32 33 34 ..ceeeeeeses 1234
BFFFDAD4 : EC DA FF BF 48 DB FF BF - FO B1 18 00 80 BE 87 R
BFFFDAC4 : FO DC FF BF 74 78 65 74 - F4 01 00 00 FO DC FF .txet........
BFFFDAB4 : 00 00 00 00 08 DF FF BF - 44 E8 00 00 FO DC FF BF ........ Deveeenn
[0017:0000E29A ] ——————mmm e [code]
0xe29a <CheckPassword+7>: test edx,edx
0xe29c <CheckPassword+9>: je 0xe2c5 <CheckPassword+50>
0xe29e <CheckPassword+11>: mov edi,edx
Oxe2al0 <CheckPassword+13>: cld
Oxe2al <CheckPassword+14>: mov ecx,Oxffffffff
0Oxe2a6 <CheckPassword+19>: mov eax, 0x0
Oxe2ab <CheckPassword+24>: repnz scas al,BYTE PTR es:[edi]
Oxe2ad <CheckPassword+26>: cmp ecx,Oxfffffff7

Let's spy what's on EDX register. Try
gdb$ x/s Sedx
OxbfffdcfO:

"1234567890"

Voila,

Recalling our disassembly:
_CheckPassword:

l: 0000e293 55

2: 0000e294 89e5

3: 0000e296 57

4: 0000e297 8b5508
move our serial into EDX
5: 0000e29a 85d2

check if EDX is empty

6: 0000e29c 7427

jump if empty, else continue
7: 0000e29e 89d7

8: 0000e2a0 fc

9: 0000e2al DbIOffffffff
10: 0000e2a6 b800000000
11: 0000e2ab f2ae

12: 0000e2ad 83f9f7

13: 0000e2b0 7513

14: 0000e2b2 807a022a
"%

15: 0000e2b6 750d

16: 0000e2b8 807a0540
‘e

17: 0000e2bc 7507

18: 0000e2be b801000000
19: 0000e2c3 eb05

20: 0000e2c5 Db80000000O
21: 0000e2ca 5f

dumping that register as a string...

movl
movl

movl

movl

it's our serial number. Lines 4,5 and 6 are checking if input was empty or not.

pushl $ebp

movl %esp, $ebp

pushl $edi

movl 0x08(%ebp),%edx <-
testl $edx, sedx <-
je 0x0000e2c5 <-
movl $edx, sedi

cld

SOxffffffff, secx
$0x00000000, %eax
repnz/scasb %al, (%edi)

cmpl $0x£f7,%ecx

jne 0x0000e2c5

cmpb $0x2a,0x02 (%edx)

jne 0x0000e2c5

cmpb $0x40,0x05 (%edx)

jne 0x0000e2c5
$0x00000001, %eax

jmp 0x0000e2ca
$0x00000000, %eax

popl $edi



22: 0000e2cb 5d popl %ebp
23: 0000e2cc c3 ret

Since our input isn't empty, you should continue to step until you have reached line 7,
address 0Oxe29e.

At line 7, our serial is copied from register EDX to register EDI. No big deal here.
Line 8 clears the direction flag, causing string instructions to increment the SI and DI
index registers.

Line 9 is filling ECX register with value OxXFFFFFFFF.

Line 10 is zeroing EAX register.

Line 11 is more interesting. Definition for repnz instruction is:

Repeats execution of string instructions while CX != 0 and the Zero Flag is clear.

CX is decremented and the Zero Flag tested after each string operation.

The combination of a repeat prefix and a segment override on processors other than the
386

may result in errors if an interrupt occurs before CX=0.

The scasb instruction definition is:

The x86 family of microprocessors come with with the scasb instruction which searches
for the first occurence

of a byte whose value is equal to that of the AL register. The address of the start of
the string itself has to

be in the EDI register. Technically, it is supposed to be in the extra segment, but we
do not need to worry about

that in the flat 32-bit memory mode anymore. When used along with the repne prefix, the
scasb instruction goes up

(or down, depending on the direction flag) the memory, looking for the match.

From these two definitions, you can understand that Line 11 is scanning for the NULL
value. Why is that ?

EAX is a 32 bits register that can be divided into two 8 bits registers AH and AL.
The NULL value is equal to 0x00. Since EAX was zeroed on line 10, AH should give you
0x00 (an 8 bit value).

You can verify that in gdb:

gdb$ x/x (char) $al

0x0: Cannot access memory at address 0x0

You need to typecast using (char) because $al is 8 bits or 1 byte. If you simply try x/x
$al, you will get an error.

If you try to step the code, you will see that line 11 will keep being executed until it
reaches the end of our serial

(strings end with the NULL value).

At line 12, ECX register is compared against 0xF7. You can recall that at line 7, ECX
was filled with OXFFFFFFFF.

Why is this ? Well from REPNZ definition you have:

"CX is decremented and the Zero Flag tested after each string operation.”

So each time the repnz/scasb instruction was executed, the value in ECX was being
decremented.

Now we finally can understand what these lines were doing, they were checking for the
size of our serial number !!!

If you have used "1234567890" as serial number, check the value of ECX when you have
reached line 12.

0x0000e2ad in CheckPassword ()

EAX: 00000000 EBX: BFFFDCF0 ECX: FFFFFFF4 EDX: BFFFDCFO od I t s Z a P ¢
ESI: 0019A400 EDI: BFFFDCFB EBP: BFFFDAB8 ESP: BFFFDAB4 EIP: 0000E2AD
CS: 0017 DS: 001F ES: 001F FS: 0000 GS: 0037 SS: 001F
[001F : BFFFDABA | === = — — — — oo o o [stack]
BFFFDB04 : 00 00 00 00 74 72 70 63 - 74 00 00 00 FO Bl 18 00 ....trpcCt.......



BFFFDAF4 : 35 36 37 38 39 30 00 00 8E BE 87 00 30 AC 19 00 567890...... 0...
BFFFDAE4 : 00 00 00 00 18 DB FF BF OA 00 00 00 31 32 33 34 .vveeeeennns 1234
BFFFDAD4 : EC DA FF BF 48 DB FF BF FO Bl 18 00 80 BE 87 00 . R
BFFFDAC4 : FO DC FF BF 74 78 65 74 F4 01 00 00 FO DC FF BF . .txet..o00. .
BFFFDAB4 : 00 00 00 00 08 DF FF BF 44 E8 00 00 FO DC FF BF ceeeeeen D.......
[0017:0000E2AD | ———————m e - [code]
Oxe2ad <CheckPassword+26>: cmp ecx,Oxfffffff7

0xe2b0 <CheckPassword+29>: jne 0xe2c5 <CheckPassword+50>

0xe2b2 <CheckPassword+31>: cmp BYTE PTR [edx+0x2],0x2a

0xe2b6 <CheckPassword+35>: jne 0xe2c5 <CheckPassword+50>

0xe2b8 <CheckPassword+37>: cmp BYTE PTR [edx+0x5],0x40

0xe2bc <CheckPassword+41>: jne 0xe2c5 <CheckPassword+50>

Oxe2be <CheckPassword+43>: mov eax,0x1

Oxe2c3 <CheckPassword+48>: jmp Oxe2ca <CheckPassword+55>

gdb$ x/x $ecx
Oxfffffffd:

Cannot access memory at address Oxfffffff4

It's OXFFFFFFF4, which of course will fail when compared against OxXFFFFFFF7.
I think you can spot that our serial number is 3 characters longer that what is

expected.

Our test serial must be something like "123457".

the value of ECX.
This time you get:
gdb$ x/x $ecx
OXEfffffff7:

The JNE at line 13 will be avoided and the first check is beaten.

Let's recall our disassembly:
CheckPassword:

1: 0000e293 55 pushl
2: 0000e294 89e5 movl
3: 0000e296 57 pushl
4: 0000e297 8b5508 movl
move our serial into EDX

5: 0000e29a 85d2 testl
check if EDX is empty

6: 0000e29c 7427 je
jump if empty, else continue

7: 0000e29e 89d7 movl
save our serial to EDI

8: 0000e2a0 fc cld
clear direction flag

9: 0000e2al DbOffffffff movl

ECX = OXFFFFFFFF

10: 0000e2a6 b800000000 movl

EAX = 0x00000000

11: 0000e2ab f2ae

Scan for NULL value and at the same time calculting serial length
12: 0000e2ad 83f9f7 cmpl
Is input serial length equal to 7 chars ?

13: 0000e2b0 7513 jne
Jump if not (invalid serial)

14: 0000e2b2 807a022a cmpb
Ce

15: 0000e2b6 750d jne
16: 0000e2b8 807a0540 cmpb
ra

17: 0000e2bc 7507 jne
18: 0000e2be b801000000 movl

19: 0000e2c3 eb05 jmp

Cannot access memory at address Oxfffffff7

Try with this new one and check again

$ebp

%esp, $ebp

%edi
0x08(%ebp), %edx
gedx, sedx

0x0000e2c5

%edx, sedi

SOxffffffff, secx

$0x00000000, %eax

repnz/scasb %al, (%edi)

$S0xf7,%ecx
0x0000e2c5
$0x2a,0x02 (%edx)

0x0000e2c5
$0x40,0x05 (%edx)

0x0000e2c5

$0x00000001, %eax

0x0000e2ca



20: 0000e2c5 Db80000000O movl $0x00000000, %eax

21: 0000e2ca 5f popl %edi
22: 0000e2cb 5d popl %ebp
23: 0000e2cc c3 ret

Let's look at line 14. The value 0x2a is being compared against some value at EDX.
Remember that EDX still holds our serial. OTX shows us that 0x2a corresponds

to ascii character *. It's easy to understand that some place in our serial is being
compared against value 0x2a, or by other words, that place in our serial

must hold the character *. The place in our serial should be character at position 3
(remember counting starts at 0 and not 1).

We can easily verify this:

gdbs$

0x0000e2b2 in CheckPassword ()

EAX: 00000000 EBX: BFFFD7A0 ECX: FFFFFFF7 EDX: BFFFD7/A0 od I t s Z a P c
EST: 00192400 EDI: BFFFD7A8 EBP: BFFFD568 ESP: BFFFD564 EIP: 0000E2B2
Cs: 0017 DS: 001lF ES: 00lF FS: 0000 GS: 0037 SS: O00lF

[001F :BFFFD564 | —————— - — oo [stack]
BFFFD5B4 : 30 A1 19 00 08 D7 FF BF — DA DB FF 91 D9 7A DB 93 O¢cceeeeeencas Z..
BFFFD5A4 : 35 36 37 00 €8 D5 FF BF - 71 D3 FF 91 47 F3 1F 00 567..... qg...G...
BFFFD594 : 00 DO 05 00 A8 D1 02 00 - 07 00 00 00 31 32 33 34 ..ceeeeecnnn 1234
BFFFD584 : 9C D5 FF BF 00 04 00 00 - 02 00 00 00 10 A1l 19 00 ..cceeeeeccnnnns
BFFFD574 : A0 D7 FF BF 74 78 65 74 - F4 01 00 00 AO D7 FF BF ....txet....o...
BFFFD564 : 00 00 00 00 B8 D9 FF BF - 44 E8 00 00 A0 D7 FF BF ....c... Deveevenn
[0017:0000E2B2 | ———————— - [code]
0xe2b2 <CheckPassword+31>: cmp BYTE PTR [edx+0x2],0x2a

0xe2b6 <CheckPassword+35>: jne 0xe2c5 <CheckPassword+50>

0xe2b8 <CheckPassword+37>: cmp BYTE PTR [edx+0x5],0x40

0xe2bc <CheckPassword+41>: jne 0xe2c5 <CheckPassword+50>

Oxe2be <CheckPassword+43>: mov eax,0x1

Oxe2c3 <CheckPassword+48>: jmp Oxe2ca <CheckPassword+55>

0xe2c5 <CheckPassword+50>: mov eax, 0x0

Oxe2ca <CheckPassword+55>: pop edi

gdb$ x/s S$Sedx+0x2

Oxbfffd7a2: "34567"
gdb$ x/c S$Sedx+0x2
Oxbfffd7a2: 0x33

Conclusion: Our serial character number 3 should be equal to *.

At line 16, you have similar code. This time character is @ and our serial position is
number 6.

This time input your serial like "12*4567" and check.

0x0000e2b8 in CheckPassword ()

EAX: 00000000 EBX: BFFFD7A0 ECX: FFFFFFF7 EDX: BFFFD7/A0 od I t s Z a P c
EST: 00192400 EDI: BFFFD7A8 EBP: BFFFD568 ESP: BFFFD564 EIP: 000OE2BS8
Cs: 0017 DS: 001lF ES: 00lF FS: 0000 GS: 0037 SS: O00lF

[001F :BFFFD564 | —————— - — oo [stack]
BFFFD5B4 : 50 6F 17 00 08 D7 FF BF — DA DB FF 91 E2 8E DB 93 PO.tcteeeccscnsns
BFFFD5A4 : 35 36 37 00 €8 D5 FF BF - 71 D3 FF 91 E3 EE 1F 00 567..... eoeooos
BFFFD594 : 00 DO 05 00 A8 D1 02 00 - 07 00 00 00 31 32 2A 34 ...ceeeeennn 12*4
BFFFD584 : 9C D5 FF BF 00 04 00 00 - 02 00 00 00 30 6F 17 00 ..ccveeeeccnn 0o..
BFFFD574 : A0 D7 FF BF 74 78 65 74 - F4 01 00 00 AO D7 FF BF ....txet....o...
BFFFD564 : 00 00 00 00 B8 D9 FF BF - 44 E8 00 00 A0 D7 FF BF ........ Deveevenn
[0017:0000E2B8 | —————————— - [code]
0xe2b8 <CheckPassword+37>: cmp BYTE PTR [edx+0x5],0x40

0xe2bc <CheckPassword+41>: jne 0xe2c5 <CheckPassword+50>

Oxe2be <CheckPassword+43>: mov eax,0x1



Oxe2c3 <CheckPassword+48>: jmp Oxe2ca <CheckPassword+55>

0xe2c5 <CheckPassword+50>: mov eax, 0x0
Oxe2ca <CheckPassword+55>: pop edi
Oxe2cb <CheckPassword+56>: pop ebp
Oxe2cc <CheckPassword+57>: ret

gdb$ x/s Sedx+5

Oxbfffd7a5: "67"
gdb$ x/c Sedx+5
Oxbfffd7a5: 0x36
gdbs$

After this check, 0x1l is moved into EAX and we return from CheckPassword function.
Moving 0x1l into EAX is usually a sign of a good serial.

Since no other checks are done, we can conclude that serial must be 7 chars long, 3rd
char must be equal to * and 6th char must be equal to @.

All the other chars can be whatever we want.

Try to input the following serial, 12*45@7 or ab*de@g or any other combination. It
should work :)

Final recall to disassembly listing:

_CheckPassword:

1: 0000e293 55 pushl %ebp

2: 0000e294 89e5 movl %esp, $ebp
3: 0000e296 57 pushl %edi

4: 0000e297 8b5508 movl 0x08(%ebp), %edx
move our serial into EDX

5: 0000e29a 85d2 testl $edx, sedx
check if EDX is empty

6: 0000e29c 7427 je 0x0000e2c5
jump if empty, else continue

7: 0000e29e 89d7 movl %edx, sedi
save our serial to EDI

8: 0000e2a0 fc cld

clear direction flag

9: 0000e2al DbOffffffff movl SOxffffffff, secx
ECX = OXFFFFFFFF

10: 0000e2a6 b800000000 movl $0x00000000, %eax
EAX = 0x00000000

11: 0000e2ab f2ae repnz/scasb %al, (%edi)
Scan for NULL value and at the same time calculting serial length

12: 0000e2ad 83f9f7 cmpl $0xf7,%ecx
Is input serial length equal to 7 chars ?

13: 0000e2b0 7513 jne 0x0000e2c5
Jump if not (invalid serial)

14: 0000e2b2 807a022a cmpb $0x2a,0x02 (%edx)
<- compare our serial character number 3 against character *

15: 0000e2b6 750d jne 0x0000e2c5
if not equal then jump (invalid serial)

16: 0000e2b8 807a0540 cmpb $0x40,0x05 (%edx)
<- compare our serial character number 6 against character @

17: 0000e2bc 7507 jne 0x0000e2c5
if not equal then jump (invalid serial)

18: 0000e2be b801000000 movl $0x00000001,%eax
return our serial as a good one

19: 0000e2c3 eb05 jmp 0x0000e2ca
return to the end of the function

20: 0000e2c5 Db800000000 movl $0x00000000, %eax
return our serial as a bad one

21: 0000e2ca 5f popl %edi

22: 0000e2cb 5d popl %ebp

<-

<=



23: 0000e2cc <3 ret

A keygen can be created easily. You just need some random digits for all the other
positions. I leave that as an exercise for you.

2 - Conclusion

Here we are at the end. This tutorial teached you (hopefully!) how to fish a valid
serial number. The biggest difficulty while phishing serials is to understand

what the code is doing. You will need to have assembler knowledge and be able to
understand what the code is doing, that is, reversing, transforming low level code
(assembler) into high level (C or any other language, or at least an algorithm).

As an exercise, you could patch the program to accept any serial or to remove that
initial nag. Try to do it :)

If you have any suggestions, doubts or found any error, please feel free to leave a
comment at my blog http://reverse.put.as or drop an email at reverse AT put.as

Have fun!
fG!



