
©
 S

A
N

S
In

st
itu

te
 2

00
2,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2002, As part of the Information Security Reading Room. Author retains full rights.

Mac OS X 10.1.4: Security Analysis and Recommendations
Daniel Deal
June 4, 2002
GSEC Practical Version 1.3

Summary

Mac OS X’s core is based on BSD UNIX and, therefore, Mac OS X inherits the
UNIX legacy and its security strengths and weaknesses. Apple deserves credit
for making their product fairly secure out-of-the-box. All services served by the
Internet superserver are disabled by default. To my knowledge, Mac OS X is the
first commercial version of UNIX that ships with important third party security
tools like TCP wrappers, OpenSSH, and the packet-filtering IP firewall. Mac OS
X also provides the ability to notify users when system updates are available.
Apple’s latest OS lags behind other BSD distributions, though, with regards to
some security measures. The operating system lacks any method to hide
password hashes from unprivileged users, has insignificant password strength
requirements, and lacks the ability to use a password hash algorithm other than
DES. Some programs unnecessarily have set-UID and set-GID bits set and this
also poses potential problems. This paper is an introduction to the security
implications of Apple’s latest offering (Mac OS X 10.1.4 at the time of this
writing), providing particular focus on NetInfo, Mac OS X’s directory system, and
is intended to be a starting point for your own research.

Introduction

Mac OS X has broad appeal to both end-users and administrators alike. It melds
the familiar features and robustness of UNIX with the user-friendliness expected
from a Macintosh OS into a cohesive package. Administrators in heterogeneous
environments that include UNIX and Linux systems will welcome Mac OS X to
the stable of systems they support. They will appreciate its versatility, built-in
security mechanisms, and remote administration capabilities. End-users will
value the stable environment provided by Mac OS X’s protected memory and
pre-emptive multitasking kernel. Apple’s latest offering also has the distinction of
being the only UNIX flavor that has a native version of Microsoft Office. This
feature alone will help Mac OS X to gain a more widespread presence than any
other flavor of UNIX.

Because of its broad appeal and its potential to become the most widespread
BSD distribution on the desktop, it is imperative that administrators understand
the risks Mac OS X introduces to their networks. As security-conscious
administrators know, a network is only as secure as its weakest link. Apple’s
new operating system presents security concerns both common to most UNIX-
like operating systems and peculiar to Mac OS X. This paper addresses security
concerns regarding choice of filesystem, physical access, NetInfo directories,

©
 S

A
N

S
In

st
itu

te
 2

00
2,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2002, As part of the Information Security Reading Room. Author retains full rights.

password authentication, the internet superserver and other UNIX daemons, and
root privilege mechanisms. I will also address strengths such as Mac OS X’s
built-in firewall, its semi-automated software update feature, its support of
popular commercial anti-virus software, and its ability to run powerful UNIX
security and security auditing tools.

I have devoted a considerable portion of my research to NetInfo, Mac OS X’s
directory system. This topic held much interest for me because I was wholly
unfamiliar with the system. I found many sources that described NetInfo’s
primary vulnerability: Unprivileged users and processes can extract sensitive
information from a NetInfo directory. I read of a possible solution that involved
moving sensitive information to the traditional, protected locations used by other
UNIX distributions. I did not, however, find resources that described the
effectiveness of this solution or the problems that may arise by altering Apple’s
intended NetInfo configuration scheme. This lack of information led me to
perform my own experiments and I present my results in detai l below (see
NetInfo and Disclosure of Sensitive Information).

The earliest version of the Classic environment supported by Mac OS X is Mac
OS 9.1. For the sake of brevity I will use the term “Mac OS 9.x” to refer to Mac
OS 9.1 and Mac OS 9.2.x, and I will use “Mac OS X” and “X” interchangeably. I
will also use the convention that GUI tools, like NetInfo Manager, will be
italicized. I will precede command-line examples with a “>” prompt to indicate
that these are commands that should be entered at a shell prompt. Additionally, I
will use the term “administrative user” to refer to any user belonging to the group
“admin,” but will use the term “administrators” to refer to the target audience of
this paper—those people responsible for maintenance and security of systems
on their networks. The two groups may overlap, but I make the distinction here
for clarity.

Filesystem Considerations

Mac OS X supports installation on disk partitions formatted using UFS or HFS+
filesystems. There are advantages to installing Mac OS X on a UFS volume.
These security advantages outweigh the minor pitfalls associated with using the
UFS filesystem.

UFS is case-sensitive like most UNIX filesystems whereas HFS+ is case-
preserving, but case-insensitive. The case-insensitive nature of HFS+ creates
vulnerabilities. With regard to security, programmers invariably make
assumptions. Conclusions drawn from these assumptions become invalid when
the assumptions no longer hold true. A well-known illustration of this point with
respect to Mac OS X is the use of Apache to serve files on HFS+ volumes.
Apache programmers assumed served filesystems would be case-sensitive and
this assumption created vulnerabili ties when Apple shipped Mac OS X, with

©
 S

A
N

S
In

st
itu

te
 2

00
2,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2002, As part of the Information Security Reading Room. Author retains full rights.

Apache, on HFS+ volumes. A fix has been available for some time, but Apache
is certainly not the only UNIX program that has made this assumption. Additional
vulnerabilities associated with using UNIX-derived tools on Mac OS X can be
avoided by limiting their use to UFS filesystems.

Both filesystems support UNIX metadata (owner and mode bits) necessary for
filesystem discretionary access control (DAC) mechanisms, which are common
to all flavors of UNIX. On a UFS filesystem, this metadata is stored in a file’s
inode. On a HFS+ filesystem, this metadata is stored with the file data because
HFS+ does not use inodes. Although HFS+ supports DAC metadata, Mac OS
9.x neither creates this metadata nor respects DAC metadata created by Mac OS
X. A disadvantage of installing X on a HFS+ volume is that booting into Mac OS
9.x will circumvent DAC mechanisms and allow a user unrestricted access to
your Mac OS X volume (see Physical Access Concerns, below). Mac OS 9.x
cannot, however, mount or read UFS volumes. This inability to use UFS
volumes may be inconvenient, but putting a Mac OS X installation on a UFS
volume reduces the vulnerabilities posed by physical access to the computer.

There are several caveats regarding the installation of Mac OS X on a UFS
volume. If X is installed on a UFS volume, the system volume will be named "/"
instead of the default "Mac OS X" and any customization of the volume name will
be lost upon restart. Having the root of the filesystem named "/" is at worst an
annoyance and at best a familiar feature to UNIX users. Perhaps the only
genuine problem will persist only as long as Classic applications continue to be
used: The type/creator code scheme used to associate documents with
applications in Classic will not function if Mac OS X is installed on a UFS volume.
If a user of Mac OS X relies on Classic applications, the convenience of
launching these applications with a simple double-click on a document in Finder
may outweigh the benefit of improved security that the UFS filesystem offers.
Other issues with using Mac OS X on UFS seem trivial. These issues include an
"Open Enclosing Folder" bug in Sherlock and an issue with the Classic
environment not starting without some manual modifications.

Airport, Apple’s name for 802.11b wireless Ethernet, presents its own security
risks: ease of network sniffing and decryption of traffic by attackers even if WEP
is used. As of Mac OS X 10.1, however, Airport now functions when X is
installed on a UFS volume. Airport functionality is the only problem regarding the
use of UFS that Apple has addressed to date, but the outstanding UFS issues
have minimal impact upon a Mac OS X system. Overall, UFS filesystems
presents fewer vulnerabilities than HFS+ filesystems. Unless the use of
type/creator codes is imperative, my recommendation would be to ensure that
Mac OS X is installed on a UFS volume.

Physical Access Concerns

©
 S

A
N

S
In

st
itu

te
 2

00
2,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2002, As part of the Information Security Reading Room. Author retains full rights.

Physical access to a Macintosh running Mac OS X presents a number of security
concerns. Just as with other flavors of UNIX, physical access to the machine
provides the ability to bypass existing security mechanisms by booting from a
device other than the default boot device (e.g. installation CDs or alternate boot
disks, either internal or external). Booting from installation CDs, especially,
poses greater risks for Mac OS X systems than it does for other commercial
UNIX flavors because the installation CDs are easier to obtain. Every new
Macintosh ships with installation CDs, whereas, in my own experience, Sun
SPARCstations and SGI IRIX workstations most often do not ship with
installation CDs. I cannot speak for IBM AIX or HP-UX systems, and it is true
that both Solaris can easily be downloaded from Sun’s website and any
distribution of Linux can be downloaded from numerous mirror sites, but Mac OS
X installation CDs may be more prolific due to likely higher-volume sales of
Macintoshes than other UNIX systems. Due to the ease of obtaining and booting
installation CDs or booting from alternate boot volumes and bypassing filesystem
permissions, it is doubly important that administrators of Mac OS X systems
understand the methods available to boot alternate startup volumes and what
measures can be taken to prevent unauthorized use of these features.

Administrative users can boot from alternate locations by selecting an alternate
System folder in the Startup Disk preference pane in System Preferences, by
holding down the option key during startup, or by holding down the c key to boot
from an installation CD. If the system is booted into Mac OS 9.x, filesystem
permissions on HFS+ volumes can be circumvented, allowing the equivalent of
root-level access to those volumes. Booting from alternate Mac OS X installation
locations circumvents filesystem permissions for both HFS+ and UFS volumes.
If an attacker has installed X on an external drive and can boot from it, he can
authenticate against his own root or administrative user password hash on the
external drive instead of the hashes stored in the default boot device. Installing X
on a UFS volume obviously imparts no resistance to this method of attack.

Apple has also provided a method by which a user may reset any user password
on a Mac OS X system. This is accomplished by booting from a Mac OS X CD
and selecting "Reset Password" from the Installer menu. Apple considers this a
feature. It will certainly be useful in a home setting where an administrative user
may not understand the importance of remembering passwords, but it presents a
risk of which any administrator should be aware.

“Target Disk Mode” also enables booting from an alternate volume. Mac OS X
systems that have built-in FireWire ports can be started up in Target Disk Mode
by holding down the t key upon startup. Connecting another Macintosh via
FireWire cable to the system booted in Target Disk Mode will allow the mounting
of its volumes. If the host computer is running Mac OS 9.x, it will be able to
mount HFS+ volumes on the target computer. If the host computer is running
Mac OS X, it will be able to mount UFS and HFS+ volumes. Either way, the host
computer will potentially gain root-level access to any volumes it can mount.

©
 S

A
N

S
In

st
itu

te
 2

00
2,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2002, As part of the Information Security Reading Room. Author retains full rights.

Another method of booting a Mac OS X system is single user mode. One may
enter single user mode by simply holding down the command-s key sequence
during system startup. The risk here is that single user mode requires no
authentication by default and imparts root-level access to the system.

The most apparent method to eliminate these risks associated with physical
access to a Mac OS X system is to change the “security-mode” variable in the
system’s Open Firmware. This setting is supported by Apple Open Firmware
4.1.7 and later. Supported values for this setting are “none” (the default),
“command,” or “full.” The effects of these values of the “security-mode” variable,
at the Open Firmware prompt, are described clearly by CodeSamurai in a
SecureMac.com article:

 The “command” mode just restricts the commands that may be

executed to “go and “boot.” Additionally, under the “command”
mode, the “boot” command may not have any arguments—that is, it
will only boot the device specified in the boot device [sic] variable;
no other command may be entered or any settings changed unless
the password is supplied. Moreover, this password protection
feature also applies to booting up with the option key held down
(which allows you to choose from available bootable volumes…).
Finally, in “full” mode, the machine is completely prohibited from
booting until the password is entered (21).

Apple provides a GUI utility called, appropriately enough, “Open Firmware
Password” to set the Open Firmware security-mode variable to “command” and
create an Open Firmware password. Once these settings are enabled and a
password is set, (in addition to the Open Firmware command restrictions outlined
above) keys that affect normal startup are disabled. An Apple Knowledge Base
document provides details:

 When turned off, Open Firmware Password Protection:

• blocks the ability to use the “C” key to start up from a CD-
ROM disc.

• blocks the ability to use the “N” key to start up from a NetBoot
server.

• blocks the ability to use the “T” key to start up in Target Disk
Mode (on computers that offer this feature).

• blocks the ability to start up in Verbose mode by pressing the
Command-V key combination during startup.

• block [sic] the ability to start up a system in Single-user mode
by depressing the Command-S key combination during
startup.

• blocks a reset of Parameter RAM (PRAM) by pressing the
Command-Option-P-R key combination during startup.

©
 S

A
N

S
In

st
itu

te
 2

00
2,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2002, As part of the Information Security Reading Room. Author retains full rights.

• requires the password to use the Startup Manager, accessed
by pressing the Option key during startup…

• requires the password to enter commands after starting up in
Open Firmware, which is done by depressing the Command-
Option-O-F key combination during startup. (11)

To enable these keys again the Open Firmware Password application must be
used to reset the security-mode variable to “none.” The password can be reset
and changed 1) by any user of the admin group, 2) by starting up the computer
from a Mac OS 9.x System Folder, or 3) if one has access to the internal
hardware of the Macintosh. If the first method poses a risk, then administrators
should verify that all users belonging to the admin group require such privilege
and should consider using the sudo utility to allow finer-grained control of
administrative privileges than the admin group scheme allows (see Authorized
Root Privilege Mechanisms, below). The Open Firmware password itself will
prevent all but one method (the Startup Disk preference pane) of booting Mac
OS 9.x, so method two should pose no risk. If there is a threat associated with
the vulnerability of physical access to the internal hardware, an administrator
should lock the case of the Macintosh.

It is important to note that Apple neither supports nor endorses the use of these
Open Firmware security measures on versions of Mac OS X earlier than 10.1 or
when used with third-party software utilities. Improperly changing Open
Firmware settings may cause damage that only Apple can repair and these
repairs may not be covered by Apple’s warranty. Good examples of potential
harm are reports of permanent Open Firmware corruption if the Open Firmware
password is not disabled before performing a firmware update.

The msec group has released a utility called FWsucker that will extract and
decrypt the Open Firmware password. It is available at
http://www.msec.net/software/FWSucker.sit. This program comes with little
documentation and I have found that it worked only if my Macintosh was booted
into Mac OS 9.2.2. It would not work while Mac OS X was booted. This program
should pose little risk because unprivileged users will not be able to boot into
Mac OS 9.x if Open Firmware is password-protected. If the Open Firmware
password is set, the only way to boot into Mac OS 9.x without knowing the
firmware password is to select a Mac OS 9.x system folder in the Startup Disk
preference pane. This action can only be performed by users of the admin
group. Note that it is trivial procedure, then, for any administrative user to gain
the Open Firmware password.

Leaving a system unattended while logged-in as a user with administrator
privileges or with an open shell that has administrator or root privileges is against
recommended practices on any flavor of UNIX. All users should password-
protect their screen saver and activate it when they step away from a Mac OS X
system. This will prevent passersby from tampering with the system. One may

©
 S

A
N

S
In

st
itu

te
 2

00
2,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2002, As part of the Information Security Reading Room. Author retains full rights.

enable this effect by clicking the “Use my account password” in the “Activation”
tab of the Screen Saver panel in System Preferences. One should also select an
appropriately short delay for screen saver activation using the slider here and
create a hot-corner for immediate activation of the screen saver in the “Hot
Corners” tab.

An out-of-the-box Mac OS X install, once activated by the creation of the first
administrative user, may be setup to automatically login that user upon system
startup. This behavior should be disabled by unchecking the “Automatically log
in” box in the “Login Window” tab of the Login preference pane in System
Preferences. A final precaution that should be taken is to prevent Mac OS X
from revealing valid usernames in the login window. One may do this by clicking
the “Name and password entry fields” radio button, under the “Display Login
Window as:” heading on the same tab.

To lessen the risk associated with physical access to a Mac OS X computer,
administrators should make several changes to a default installation. They
should create an Open Firmware password. This measure disables most
methods of booting from alternate boot devices. They should carefully limit the
privilege of belonging to the admin group to restrict the use of the Startup Disk
preferences pane to boot from alternate locations. Administrators should disable
automatic login and disable the display of usernames in the login window. They
should physically lock the cases of Macintoshes. Additionally, all users should
use a password-protected screen saver. The sum of these measures is a more
physically secure Macintosh.

NetInfo and Disclosure of Sensitive Information

NetInfo is intended to function as a hierarchical, distributed directory system and
it performs this function well. It was not designed, however, to be secure.
NetInfo provides information to NetInfo domain clients in a fashion similar to
Sun’s NIS system. It also presents similar vulnerabilities. As with NIS, an
unprivileged user can obtain any directory information from the NetInfo domain to
which a Mac OS X system is bound (either from a NetInfo server or from the local
database). Administrators can configure NetInfo tools to consult traditional UNIX
“flat files” rather than NetInfo directories when C library functions make directory
queries. This presents the possibili ty to restrict viewing of sensitive data by using
filesystem DAC mechanisms. This section will explore this alternative, present a
procedure for implementing it, and explain the consequences of altering Apple’s
default configuration. I will also describe how and when Mac OS X backs up
NetInfo, touch upon the existing “shadow property” security mechanism of
NetInfo, and present changes to restrict access to NetInfo’s command-line
utilities.

NetInfo shares a weakness with NIS that permits the disclosure of sensitive

©
 S

A
N

S
In

st
itu

te
 2

00
2,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2002, As part of the Information Security Reading Room. Author retains full rights.

information to unprivileged users and processes. Any user in an NIS domain can
issue “ypcat passwd” and obtain user account information and password hashes.
Likewise, an unprivileged Mac OS X user can issue “nidump passwd /” to obtain
the same information from a NetInfo domain. If a Mac OS X system is not bound
to a remote NetInfo server, the above command will be equivalent to “nidump
passwd .” and will dump the local NetInfo user information in passwd file format.

Under the right conditions, this method can also be used if a malicious user on a
system not belonging to a domain can guess the name of a NetInfo domain and
the corresponding name or address of a domain server. By default, the NetInfo
"trusted_networks" property exists, but has no value. This has the effect of
denying access to the system’s served NetInfo directories to all but the localhost.
If the property does have valid values, then any system on a trusted network
could coax a NetInfo server to reveal any portion of a served NetInfo directory.
The bottom line is that a default install of Mac OS X is not vulnerable to remote
exploitation of NetInfo’s trustfulness, but administrators should be aware of this
weakness of NetInfo as a distributed directory system.

How can the local problem of NetInfo’s revelation of password hashes and other
sensitive information be circumvented? Though Mac OS X has a shadow
password file, /etc/master.passwd, its comments tell us it is only referenced if the
system is started in single user mode. It turns out that an administrator can
configure the NetInfo query daemon, lookupd, to search traditional flat
configuration files in the /etc directory before (or instead of) the NetInfo database.

The lookupd daemon answers queries from C library routines, like getpwuid(),
that on most UNIX systems would be answered by searching configuration files
in the /etc directory. On a default Mac OS X install, lookupd consults the
local.nidb NetInfo directory database in /var/db/netinfo/. Unless explicitly
configured to do so, lookupd will never consult files in the /etc directory.

 The lookupd daemon uses search “agents” to answer queries. Once it finds an
answer to a query it caches the result to speed up subsequent queries. Search
agents include the CacheAgent (which searches the lookupd cache), the NIAgent
(which searches NetInfo databases), the YPAgent (which searches NIS/YP
domain servers), the LDAP Agent (which searches LDAP servers), the
DNSAgent (which queries DNS servers), the FFAgent (which searches flat files),
and the NILAgent (which always returns a negative response in order to stop a
search). We are concerned with the flat file agent, FFAgent. The default order is
to search using the CacheAgent and then the NIAgent. We want lookupd to use
the FFAgent before it searches using the NIAgent. The FFAgent will consult
many well-known configuration files in the /etc directory (14):

/etc/master.passwd Users
/etc/group Groups

©
 S

A
N

S
In

st
itu

te
 2

00
2,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2002, As part of the Information Security Reading Room. Author retains full rights.

/etc/hosts Computer names and addresses
/etc/networks Network names and addresses
/etc/services TCP/IP service ports and protocols
/etc/protocols IP protocol names and numbers
/etc/rpcs ONC RPC servers
/etc/fstab NFS mounts
/etc/printcap Printers
/etc/bootparams Bootparams settings
/etc/bootp Bootp settings
/etc/aliases E-mail aliases and distribution lists
/etc/netgroup Netgroups

There are several steps required to alter the order of the search agents consulted
by lookupd. I will outline here the procedure necessary to configure lookupd to
search for user information and password hashes in the secure (mode 0600)
/etc/master.passwd file before consulting the local NetInfo database. You must
be the root user to complete this procedure, but I encourage you to read this
entire document before attempting to alter the lookupd search order—there are
surprises ahead.

We should backup our NetInfo database before proceeding. We should perform
our own backup now, but note that the /etc/crontab file tells the cron daemon to
run /etc/daily every day at 3:!5 AM. This daily script backs up NetInfo directory
databases by performing a nidump of all domain databases found in
/var/db/netinfo and writes them to /var/backups/<domaintag>.nidump. An
unmodified Mac OS X install will have only the local database, local.nidb. Note
that this dump is world-readable by default. It is in our best interest to apply the
principle of least privilege here and alter the /etc/daily file to prevent unprivileged
users or processes from examining this text file. I have included the relevant
section of my /etc/daily script below:

if [-d /var/db/netinfo]; then
 echo ""
 echo "Backing up NetInfo data"
 cd /var/db/netinfo
 for domain in *.nidb; do
 domain=$(basename $domain .nidb)
 nidump -r / -t localhost/$domain > $bak/$domain.nidump;
 chmod 400 $bak/$domain.nidump

The last line I have added; the rest is the default. I encourage you to make a
similar change.

We can follow Apple’s lead and use the same method to backup our local NetInfo

©
 S

A
N

S
In

st
itu

te
 2

00
2,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2002, As part of the Information Security Reading Room. Author retains full rights.

database using nidump:
>nidump –r / -t localhost/local > /var/backups/local.nidump
>chmod 400 /var/backups/local.nidump
Now that we have a backup of our NetInfo directory database, we modify it
without fear of damaging our only copy. If mistakes are made, we can restore
from our backup using niload:
>niload –r / . < /var/backups/local.nidump

The first step of the procedure to change the lookupd search order is extraction
of password hashes from NetInfo.
1. Use the nidump utility to dump the NetInfo user information in passwd file
format:
>nidump passwd .

The preferred method of altering the /etc/master.passwd file is to use vipw. The
vipw program performs file locking to ensure consistency of the
/etc/master.passwd file. It will also verify that the file conforms to the correct
passwd file format and will then run pwd_mkdb, which creates the db-format
password files /etc/pwd.db and /etc/spwd.db. Based on my limited testing
(moving the master.passwd file), the FFAgent does not consult the secure
spwd.db database for password hashes, as would be the case on other BSD
distributions.

2. If you have few users, you can run vipw and cut and paste the hashes into the
/etc/master.passwd file. If you have many users, you may want to issue the
command “nidump passwd . > /etc/master.passwd” in single user mode, then
“chmod 600 /etc/master.passwd.”

3. We must create the necessary /locations/lookupd directory in our local NetInfo
database:
>nicl . –create /locations/lookupd

Now we need to populate the directory with the needed subdirectories,
properties, and values. The sample below can be cut and pasted into a text file.
This is a modified version of the sample from Apple Knowledge Base article
106499 (10). Here the FFAgent precedes the NIAgent for user lookups. A note
regarding lookupd and logging: lookupd by default does not perform any logging.
The third line in the file below will enable logging, but by default lookupd will only
log LOG_NOTICE or higher priority messages. To change this behavior, the
next line is used to set the log message priority threshold for lookupd (to
LOG_INFO). My limited testing has shown that lookupd does not log much,
regardless of the syslog priority threshold you declare here.

{
"LookupOrder" = ("CacheAgent", "NIAgent");
"name" = ("lookupd");

©
 S

A
N

S
In

st
itu

te
 2

00
2,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2002, As part of the Information Security Reading Room. Author retains full rights.

“LogFile” = (“/var/log/lookupd.log”);
“LogPriority” = (“LOG_INFO”);
"MaxThreads" = ("12");

CHILDREN = (
{
"name" = ("users");
"LookupOrder" = ("CacheAgent", "FFAgent", "NIAgent");
}

)
}

4. Put the above text into an appropriately named file, lookupd.config, for
example, and use the niload utility to modify the NetInfo database:
>niload –r /locations/lookupd . < lookupd.config

5. Send lookupd the SIGHUP signal so that it will reread its configuration.
>kill –HUP `cat /var/run/lookupd.pid`

Sending lookupd the SIGHUP signal can sometimes cause it to behave
strangely. In my testing, at least once lookupd no longer referenced the FFAgent
though this agent was first in the lookup order. Restarting Mac OS X resolved
this problem.

6. Now your system will look for user information in /etc/master.passwd, which
only the root user can read. We should now remove, at the very least, the
unprivileged user password hashes from our NetInfo database. Again if you
have many users, you will want to write a script to do this. We can use the niutil
command to lock user accounts if lookupd consults the NIAgent:
>niutil –createprop . /users/<username> passwd “*”

Now the NetInfo utilities cannot reveal user password hashes. But this
arrangement of lookupd creates several problems. The lookupd configuration
does not alter the behavior of other user management programs. For example,
the Mac OS X passwd command and the graphical user administration tool, the
Users preference pane in System Preferences, update only the NetInfo directory
database. User changes made using these tools will require administrators to
create crontabs that update /etc/master.passwd at regular intervals to maintain
this lookupd search arrangement. The administrator would also need to replicate
or move sensitive data from other NetInfo directories to their flat file counterparts
(NetInfo /machines to /etc/hosts, for example).

Another problem with this lookupd arrangement exists. When authenticating to
the NetInfo Manager application in order to make changes, the application only
attempts to authenticate against the user’s hash in the “passwd” property of the
/users/<username> NetInfo directory. Removing or locking the “passwd”
property of administrative users will prevent them from using this application

©
 S

A
N

S
In

st
itu

te
 2

00
2,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2002, As part of the Information Security Reading Room. Author retains full rights.

unless the root account has been enabled. Removing all password hashes from
the NetInfo database will effectively disable the ability of this application to make
changes, which some administrators may wish to do.

Though the chpass and vipw commands can be used to update or modify
/etc/master.passwd, Mac OS X includes no adduser command to better
automate user account creation. The adduser command would typically add an
entry to /etc/master.passwd, create a new home directory, and populate it with
files from /etc/skel. The Mac OS X equivalent of /etc/skel is
/System/Library/UserTemplate/English.lproj. A tarred version of the skeleton files
and directories can be found at
/System/Library/PrivateFrameworks/Admin.framework/Versions/A/Resources/En
glish.lproj/user.gnutar. I have not found any reference to Mac OS X-specific
versions of adduser or passwd that update the flat files in /etc. I would presume
that source for the passwd command from another BSD distribution may be
compiled and work correctly with flat files (or better yet Argonne National
Laboratory’s anlpasswd or Matt Bishop’s passwd+ could be used). There exist,
however, several adduser shell scripts available on the Internet that will allow
Mac OS X administrators to add users to a local NetInfo database. The
Linux/UNIX, searchable, software-update tracking site, http://freshmeat.net,
contains a link to adduser and deluser scripts by Dino Amato, at
http://www.brownnut.com/adduser_OSX.htm. Aaron Faby also provides a similar
set of scripts at http://www.aaronfaby.com/netinfo-scripts.1.0.tar.gz.

The simplest route for an administrator who wishes to maintain flat files may be
to use these third-party NetInfo tools and the User preference pane to modify the
system’s configuration and have cron update his flat fi les regularly. Perhaps the
dearth of information that I have found on the Internet regarding the above
lookupd changes and their consequences is a sign that Mac OS X administrators
and developers are throwing their hands up over the issue of NetInfo security
and simply decided to live with it and its deficiencies rather than deal with the
inconvenience of moving data from NetInfo and maintaining flat files.

Other issues with NetInfo regard the differences between its Mac OS X and Mac
OS X Server implementations. Mac OS X Server uses valueless NetInfo
properties called “_shadow_<propertyname>” that are intended to hide the value
of “propertyname” from unprivileged NetInfo requests for such directory
information. The Apple Knowledge Base only explicitly describes this shadowing
effect for Mac OS X Server 1.x, but the User preference pane of Mac OS X,
nevertheless, creates “_shadow_passwd” properties for new users. This makes
sense because Mac OS X and Mac OS X Server must certainly share much
source code. On Mac OS X, though, this shadow property does not prevent
unprivileged requests from retrieving the value of the “passwd” property (the
users’ password hash). It would seem that Apple has removed this shadowing
behavior in Mac OS X, but did not remove its Mac OS X Server vestiges. Does
Mac OS X Server’s NetInfo property shadowing work well? From what I have

©
 S

A
N

S
In

st
itu

te
 2

00
2,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2002, As part of the Information Security Reading Room. Author retains full rights.

read, it can be easily circumvented, and a false sense of security is often worse
than none at all. The removal of this shadow property functionality is no great
loss to Mac OS X administrators.

So is the lookupd FFAgent the answer to hiding user password hashes and other
sensitive directory information? Unfortunately, it is not. After reading about the
“_shadow_passwd” functionality in Mac OS X Server, I wanted to verify that Mac
OS X ignored this property. Apple describes the intended Mac OS X Server
behavior of the “_shadow_passwd” property in Knowledge Base article 60112:

When an executable without special privileges uses BSD-level APIs such
as getpwent, getpwnam, and getpwuid, an asterisk ("*") is returned for the
passwd field rather than the actual protected password. (13)

My goal was to determine the Mac OS X behavior of unprivileged getpwuid()
calls when lookupd uses the NIAgent and the FFAgent. I expected if the NIAgent
were used that getpwuid() would return a valid hash, regardless of the existence
of the “_shadow_passwd” property for a user. I also expected that if the FFAgent
were used that getpwuid() would return an asterisk instead of a valid hash
because unprivileged calls would consult the passwd file rather than the
master.passwd file, which they would not be able to read.

To test my hypothesis, I configured lookupd to search using only the NIAgent. I
wrote and compiled this simple bit of code:
#include <stdio.h>
#include <sys/types.h>
#include <pwd.h>

int main (int argc, char* argv) {

struct passwd *p;

 p = getpwuid(0);
 printf("root hash is %s\n",p->pw_passwd);
 p = getpwuid(505);
 printf("test hash is %s\n",p->pw_passwd);
}

Note that this code was compiled by an unprivileged user, was mode 0755, and
the owner and owner-group of the executable were the unprivileged user and
group staff, respectively. The results will not surprise the reader because, as
stated above, Mac OS X does not appear to support “_shadow_<propertyname>”
properties in NetInfo. The root user has no “_shadow_passwd” property. I
expected that this program would reveal this hash and it did. The user with uid
505 was created with the User preference pane and did have the
“_shadow_passwd” property, but, as expected, this user’s hash was revealed,

©
 S

A
N

S
In

st
itu

te
 2

00
2,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2002, As part of the Information Security Reading Room. Author retains full rights.

too.

I then configured lookupd to search for user information using only the FFAgent
and ran the above test program, again as an unprivi leged user. The results were
surprising. The program printed the valid hashes for both users as found in
/etc/master.passwd. I have tested this on two systems because I was skeptical.
I encourage Mac OS X administrators to verify these results for themselves. My
findings are that any Mac OS X user can determine all user password hashes
regardless of whether the hashes exist in a NetInfo directory or the mode 0600
shadow file, /etc/master.passwd.

NetInfo Conclusions and Recommendations

Where does this leave the frustrated administrator? We can lessen our risk by
denying access to the NetInfo utilities and our NetInfo database(s) to
unprivileged users. This should be done regardless of whether an administrator
decides to use flat files or NetInfo. The shell script that I have included below is
adapted from one found at http://sleight.port5.com/dl/ni.patch (45).

#!/bin/sh
Change permissions for NI CLI utilities
chmod go-rwx /usr/bin/nicl
chmod go-rwx /usr/bin/nireport
chmod go-rwx /usr/bin/niutil
chmod go-rwx /usr/bin/nigrep
chmod go-rwx /usr/bin/nifind
chmod go-rwx /usr/bin/nidump
chmod go-rwx /usr/bin/niload
Change permissions for Aqua NetInfo Manager
chmod o-rwx \
/Applications/Utilities/NetInfo\ Manager.app/Contents/MacOS/NetInfo\ Manager
Change permissions for NetInfo Databases
chmod go-rwx /var/db/netinfo/local.nidb
chmod go-rwx `find /var/db/netinfo -name '*.nidb'`
Change permissions for NetInfo Backup Directory
chmod go-rwx /var/backups/

These changes will prevent unprivileged users from using the NetInfo tools, but
they will not prevent them from copying their own versions of the tools from
another Macintosh or writing C programs that use the getpw*() system calls. I
encourage administrators, nonetheless, to make these changes.

NetInfo was designed as a directory system, not a secure authentication system,
and was created before much emphasis was placed on computer security. Its
behavior reflects these roots. NetInfo and its associated tools will, on a default

©
 S

A
N

S
In

st
itu

te
 2

00
2,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2002, As part of the Information Security Reading Room. Author retains full rights.

installation on X, allow any user to obtain sensitive system configuration and user
data. Altering the search order of lookupd may allow UNIX administrators to
more easily maintain consistent configurations across their UNIX platforms, but
at this time it does not impart any additional security to Mac OS X. If and when
Apple fixes the behavior of lookupd and query functions like getpwuid() and its
ilk, this alternative may prove more secure than using NetInfo for password
authentication. For now, the only useful measure administrators can take is to
restrict access to the NetInfo command-line utilities using filesystem DAC
mechanisms.

Password Concerns and Strength Testing

Perhaps of more concern than the disclosure of password hashes is whether or
not user passwords are strong and resistant to dictionary attacks. The Mac OS X
passwd command seems to perform only one password strength check; it will
reject passwords less than five characters long. The User preference pane is
even worse; it only requires four-character long passwords. This leaves
something to be desired. Additionally, I have found through my own testing that
the User preference pane and the passwd command do not consult
/etc/passwd.conf. Attempting to configure passwd to use Blowfish encryption
with /etc/passwd.conf does not result in password hashes beginning with “$2,” as
would be expected of Blowfish hashes, but results in DES hashes.

Though the company targets its products for home consumers who may have no
interest in strong password security, Apple should provide strength-checking
facilities that are easy to enable. The password creation and change programs
should allow an administrator to configure the minimum password length, enable
password aging, select a stronger hashing algorithm than DES, and include a
way for an external tool or filter to check the strength of passwords—perhaps by
making the password tools pluggable authentication module-aware.

The lack of any method to force the creation of strong passwords requires
administrators to use another proactive password-checking method: password
cracking. This should only be performed with authorization, preferably written
authorization, from someone with the authority to confer it upon an administrator.
Many tools exist to perform password cracking. A fairly complete listing of these
tools can be found at http://packetstorm.decepticons.org/Crackers/, though many
of the tools listed there are not related to UNIX password cracking. The tools I
describe below all have, in addition to dictionary modes, a brute-force mode that
will exhaustively search the entire keyspace of possible passwords. Ultimately,
though, the effectiveness of any cracking program is directly related to the size
and appropriateness of dictionaries supplied to it.

One of the most well known tools is the venerable Crack, written by Alec Muffett.
A brief tutorial exists for Crack to aid in its compilation on Mac OS X (47). Some

©
 S

A
N

S
In

st
itu

te
 2

00
2,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2002, As part of the Information Security Reading Room. Author retains full rights.

changes to the Makefile and one source file are required and this tutorial
provides some hints to help get Crack compiled. I found that compiling Eric
Young’s libdes library, included with the Crack distribution, with optimization
options “-O4 -fomit-frame-pointer -funroll-loops” rather than the tutorial’s
suggestion of “= -O” increased the performance of the libdes library’s crypt()
function from about 31,000 crypt()s per second to about 41,400 crypt()s per
second on my Power Macintosh G4/450. Crack supports whatever crypt
algorithm you wish to use and its manual.txt file contains information on using a
library other than libdes if needed. This could come in handy if or when Mac OS
X adopts the MD5 or Blowfish algorithms for password hashing.

John the Ripper, a password cracker known for its speed, is also available for
Mac OS X, albeit in development form. The latest development build of John the
Ripper, version 1.6.31-dev, includes “macosx-ppc-cc” as a build target. In order
to use the development version, you will need to copy the run/*.chr charset files
from a version 1.6 distribution to the run directory of the development build. A
default build is able to perform about 47,000 combinations per second on my
system. If John is compiled with “-O4 -fomit-frame- pointer -funroll-loops” rather
than the default optimization level “-O3,” his performance jumps to about 73,000
combinations per second on my Mac. John’s FAQ describes this metric as
combinations of login and password per second, not crypt()s per second, but
running “./john –test” reveals that this metric is just a bit less than actual crypt()s
per second on my system. John will also crack MD5 and Blowfish hashes
without any intervention by the user.

Several Mac OS Classic API crackers are also available. I have found many
references to a program called Meltino. I have seen mention of versions 1.32
and 2.01 but links to the creator’s website are no longer valid and version 2.01
appears to have been released around Jun 22, 1999 (27). I am led to believe it
is not being maintained.

Another Mac OS password cracker that uses the Carbon API, and can be
considered a native Mac OS X GUI application, is Macintosh Hacker’s Workshop
(MHW). MHW contains four modules: Generator, Gecos-Reader, Wordlist-
Cleaner, and Cracker. The Generator module allows the creation of sequential
wordlists using user-selected keyspaces. The Gecos-Reader module extracts
Gecos-field words from password files to add to wordlists (something I think the
application should do without request). The Wordlist-Cleaner module removes
duplicate words from dictionaries (handy if you’ve merged many dictionaries).
Finally, the Cracker module does the real work. On my system, MHW performed
about 36,000 “passwords per second” with only Finder running. Presumably this
metric is very close to crypt()s per second.

Though MHW is limited to cracking DES hashes and is not as fast as John the
Ripper, it will be worthwhile for Mac OS X administrators to keep their eyes on
this tool because, being the only Mac-centric cracking tool of the group, i t may be

©
 S

A
N

S
In

st
itu

te
 2

00
2,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2002, As part of the Information Security Reading Room. Author retains full rights.

the most likely to eventually include AltiVec-enabled crypt algorithms. Judging by
the speed improvement the PPC74xx CPU’s distributed.net clients have received
from Dan Oetting’s AltiVec-enabled code additions, this could mean a vast
improvement in the speed of MHW. Hopefully such AltiVec-enabled crypt code
would eventually work its way into the other tools as well.

Administrators should perform their own password-strength auditing, for three
reasons: Mac OS X has no built-in mechanisms to ensure strong password
creation, it provides no method to obscure password hashes from unprivileged
users, and it uses only the relatively computationally-unintensive (compared to
the Blowfish or MD5 algorithms) DES password-hash algorithm. Two well-known
password cracking tools from the UNIX realm are available for Mac OS X. Both
Crack and John the Ripper are capable tools for password-strength auditing.
The Macintosh Hacker’s Workshop, a native Mac OS X GUI application, may
also prove useful. Though John the Ripper is the fastest tool of this group, its
speed can be significantly improved by changing compiler optimization flags.
Regardless of their relative speeds, one must supply them with good dictionaries
to effectively use any of these tools. Below are links to the cracking tools I have
mentioned, as well as links to some dictionary files that will prove useful.

Crack 5.0a by Alec Muffett:
ftp://ftp.cert.dfn.de/pub/tools/password/Crack/Crack_5.0a.tar.gz
John the Ripper:
http://www.openwall.com/john/
Meltino 2.01:
http://freaky.staticusers.net/cracking/Meltino/Meltino2.01_PPC.sit.bin
Macintosh Hacker’s Workshop 1.1 and its documentation:
http://grungie.code511.com/MHW_1.1_Release.sit.bin
http://grungie.code511.com/MHW_11_Doc/index.html
Team2600’s 350,000+-word dictionary, Dict2000
http://www.team2600.com/software/downloads/Dic2000.sit
Other dictionary links:
http://www.outpost9.com/files/WordLists.html
ftp://ftp.ox.ac.uk/pub/wordlists

Superserver and Daemon issues

Though Mac OS X retains the BSD startup scripts /etc/rc and /etc/rc.common,
many daemons are started from scripts below the
/System/Library/StartupItems/directory, including all the daemons mentioned
below. I encourage administrators to inspect these startup scripts, as well as
/etc/hostconfig, which controls the execution of some of these scripts.

The internet super-server, inetd, is started by the IPServices script when a Mac
OS X system boots. A default install of X has all services that inetd may

©
 S

A
N

S
In

st
itu

te
 2

00
2,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2002, As part of the Information Security Reading Room. Author retains full rights.

potentially launch disabled (commented out) in /etc/inetd.conf. The only inetd-
launched daemon that may be enabled via Mac OS X GUI tools is ftpd, which
may be enabled in the Sharing preference pane by checking the “Allow ftp
access” checkbox on the “File & Web” tab. The inetd.conf file wraps all daemon
requests that can be wrapped (RPC daemons using TCP cannot be wrapped)
using Wietse Venema’s TCP wrappers (/usr/libexec/tcpd). Nothing, though, is
effectively wrapped unless one creates tcpd’s /etc/hosts.allow and
/etc/hosts.deny configuration files. The best practice here is to deny access to
everyone to whom it is not explicitly allowed. One may accomplish this by
issuing “echo ALL:ALL > /etc/hosts.deny” and then explicitly adding authorized
daemon and users/hosts combinations to /etc/hosts.allow as described in the
hosts_access(5) man page. Alternatively, xinetd, the secure replacement for
inetd, may be obtained from http://www.xinetd.org and administrators unfamiliar
with its compilation and use may find a MacSecurity.org tutorial useful (23).

Mac OS X includes an implementation of the secure replacement for telnetd and
the insecure “r*” utilities (i.e., rsh, rlogin, rexec), OpenSSH. The current version
distributed by Apple via the Software Update preference pane is 3.1p1. The
OpenSSH daemon, sshd, is started by the SSH script upon system startup if the
“Allow Remote Login” checkbox is checked on the “Application” tab in the
Sharing preference pane. This version of OpenSSH has not been compiled to
use Wietse Venema’s libwrap library.

At the date of this writing, the latest available version of OpenSSH, found at
http://www.openssh.org, is 3.2.3p1 and administrators that wish to do so may
compile and install this version using guidelines found at Stepwise.com (1),
though the instructions found there are for an earlier version of OpenSSH. I
encourage administrators who want a libwrap-capable sshd server to compile
and install the latest version themselves.

The portmap daemon, which is needed to answer remote procedure calls, is
launched at startup by the Portmap script if any NFS exports have been defined.
Consulting the portmap man page, we find that this is a secure version which can
be wrapped by adding access rules to /etc/hosts.allow as described in the
hosts_access (5) man page. The portmap man page notes, however, that
access rules must describe hosts by IP address only.

Sendmail is well known for having vulnerabilities throughout its long history, but
administrators may find it useful because some other programs, like cron, mail
log and error messages to the root user. The sendmail daemon, as it ships
configured with Mac OS X, is broken. Jeremy Mate has written an article (39)
describing a few ways to fix the directory permission problems that cause this.
He also includes an outline of how to upgrade the relatively old version, 8.10.2,
that ships with X to the latest version from http://www.sendmail.org, which is
currently 8.12.3. An administrator would be wise to add firewall rules (see
Firewalls, below) to drop TCP and UDP packets destined to port 25 that do not

©
 S

A
N

S
In

st
itu

te
 2

00
2,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2002, As part of the Information Security Reading Room. Author retains full rights.

originate from localhost.

The cron daemon, which uses crontab files to schedule jobs, is started at system
startup by the Cron script. By default the only crontab that exists on a Mac OS X
system is /etc/crontab and this file schedules the execution of the /etc/daily,
/etc/weekly, and /etc/monthly scripts:

-rw-r--r-- 1 root wheel 725 Sep 2 2001 /etc/crontab
-rw-r--r-- 1 root wheel 3690 May 18 12:32 /etc/daily
-rw-r--r-- 1 root wheel 1684 Sep 2 2001 /etc/weekly
-rw-r--r-- 1 root wheel 1101 Sep 2 2001 /etc/monthly

There is no reason that unprivileged users should need to read these files and
administrators should remove read permissions for others:
>chmod o-r /etc/crontab /etc/daily /etc/weekly /etc/monthly
Administrators should note that without the existence of the /var/cron.allow or
/var/cron.deny files any local user may create crontab files in /var/cron/crontabs
using the crontab command. Administrators would be well served to limit the
privilege of crontab creation by creating either of these files.

A measure Apple recommends is to enable ntpd, the network time
synchronization daemon. Accurate time will aid in intrusion forensics if the need
arises. One can enable network time synchronization by checking the “Use a
network time server” checkbox on the “Network Time” tab of the Date & Time
preference panel and selecting an appropriate NTP server from the presented
dropdown menu.

Authorized Root Privilege Mechanisms

Mac OS X ships with the root account disabled, though there are several ways to
enable it (28). Users of the admin group may perform tasks requiring root
privileges by authenticating themselves to Aqua tools, like the Software Update
preference pane, using Mac OS X’s Security framework. Mac OS X also
includes the sudo command-line utility that allows users to execute commands
as the superuser, root, or any other user. Only users authorized in /etc/sudoers
may use sudo, and this configuration file allows fine-grained control of which
programs may be run by which users. By default, users of the admin group may
execute any program with root privileges using sudo.

As Darwin, Mac OS X’s core, is based on BSD, X follows the BSD convention
that only users belonging to group wheel can use the su command to become
root user if the root account has been enabled. When the User preference pane
is used to create a new user, that user is placed into the groups wheel and admin
if the “Allow user to administer this computer” checkbox is checked.
Administrators should verify that only authorized users are members of these two

©
 S

A
N

S
In

st
itu

te
 2

00
2,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2002, As part of the Information Security Reading Room. Author retains full rights.

groups.

In addition, many programs owned by user root and group wheel have the set-
UID bit (SUID) or set-GID bit (SGID) turned on, granting root or group wheel
privileges to any user who executes these programs. Preston Norvell (41) does
an excellent job of describing many of these SUID and SGID programs and
explaining which can safely be removed, made unprivileged (by removing set-
UID or set-GID bits using chmod), and which should be left alone. It would be
wise to take inventory of these programs and occasionally verify that no new
ones appear when searched for using find.

Firewalls

Mac OS X includes a packet-filtering firewall called IP firewall, which is included
in many BSD distributions. This firewall al lows incoming traffic from any host to
any port by default. One can configure it by using the ipfw command-line utility
or by using GUI tools like sunburst sunShield (freeware) or Brian Hill’s
Brickhouse (shareware), or glucose Impasse (shareware). For the intrepid,
tutorials exist for setting up IP firewall rulesets using the ipfw ruleset language
(17, 22, 35). Regardless of how IP firewall rulesets are created, administrators
should familiarize themselves with the ruleset language and the ipfw man page to
aid in troubleshooting rules. For administrators seeking something more or
something different than IP firewall, three commercial, alternative firewall
packages also exist: Pliris Firewalk X 2, Intego Net barrier, and Norton Personal
Firewall.

Sunburst sunshield:
http://homepage.mac.com/opalliere/Menu3.html
Brian Hill’s Brickhouse:
http://personalpages.tds.net/~brian_hill/brickhouse.html
glucose Impasse:
http://www.glu.com/products/impasse/index.html
Pliris Firewalk X 2:
http://www.pliris-soft.com/products/firewalkx/firewalkx.html
Intego Net barrier:
http://www.intego.com/netbarrier/home.html
Norton Personal Firewall:
http://www.symantec.com/sabu/nis/npf_mac/index.html

System Software Updates

An important part of system administration is keeping systems up-to-date with
bug fixes and security updates. Apple has provided a means to notify Mac OS X
users of system updates. The Software Update preference pane can modify this

©
 S

A
N

S
In

st
itu

te
 2

00
2,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2002, As part of the Information Security Reading Room. Author retains full rights.

behavior and download and install software updates. The default configuration is
to check weekly for updates. There is no reason not to change this behavior to
daily checking in this preference pane. Administrators will want to review the list
of updates before installing them because many are localization updates for non-
English languages and may be unnecessary.

Although Apple may not provide the latest versions of some of its included open-
source programs, like OpenSSH, as quickly as they are released, many of these
programs can be downloaded from their respective homes and hand-installed by
administrators. Administrators may wish to wait for Apple to include any updated
third-party tools into official Mac OS X updates because Apple no doubt performs
internal compatibility testing on official updates before distributing them.
Information on security updates included in Apple’s software updates can be
found at http://www.apple.com/support/security/security_updates.html.

Virus prevention

Macs in general are less likely to contract viruses than Wintel systems because
the overwhelming thrust of malicious programmers’ efforts are targeted at
Microsoft Windows on Intel hardware. Administrators should expend a minimum
of effort, nevertheless, to mitigate the risks of malicious software by installing
commercial anti-virus software. Three commercial anti-virus packages exist for
Mac OS X: Symantec’s Norton AntiVirus for Macintosh 8.0, Sophos Anti-Virus
for Macintosh, and MacAfee Virex X 7.0.

Symantec Norton AntiVirus:
http://www.symantec.com/nav/nav_mac/index.html
Sophos Anti-Virus:
http://www.sophos.com/products/software/antivirus/savmac.html
MacAfee Virex X:
http://www.mcafeeb2b.com/products/virex/default.asp

UNIX Security Tools

Perhaps Mac OS X’s greatest strength is its ability to run so many security tools
with which many UNIX administrators are already familiar. There are far too
many to list here, but I will include, briefly, some that may be more useful than
others. The only notable ones I looked into that will have problems compiling on
Mac OS X are tripwire, the popular file integrity monitor, and the latest beta
(2.0b1) of PortSentry, the portscan detector.

The fink project (http://www.sourceforge.net/projects/fink) aims to bring many
open source UNIX tools to Mac OS X. It uses the Debian Linux package
management system. Binary packages available via fink that may interest

©
 S

A
N

S
In

st
itu

te
 2

00
2,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2002, As part of the Information Security Reading Room. Author retains full rights.

administrators include, among others, the packet capture library libpcap, the
network sniffers ethereal and ettercap, the portscanner and OS fingerprinting tool
nmap, and the network Swiss army knife netcat. Before installing fink, you may
wish to link /sw/include to /usr/local/include and /sw/lib to /usr/local/lib. Fink only
writes to /sw so that it will not trample on anything Apple distributes now or in the
future. Apple does not distribute many of the header files or libraries needed to
compile some tools. Fink is a helpful tool in obtaining these various libraries and
headers. You will want to either alter your include and library search paths
somehow or simply link, move, or copy the libraries and headers of packages fink
installs to the locations where makefiles will look for them.

The popular intrusion detection system Snort is also available, but it needs
libpcap header files that fink does not install. You can download the libpcap
tarball from http://www.tcpdump.org/release/libpcap-0.6.2.tar.gz. If you have
installed libpcap using fink, you only need to move the libpcap headers to
/usr/local/include and compile Snort:
>wget http://www.snort.org/dl/snort-1.8.6.tar.gz
>tar zxf snort-1.8.6.tar.gz
>cd snort-1.8.6
>./configure --with-libpcap-libraries=/sw/lib
>make ; make install
This will put snort in /usr/local/bin and its man page in /usr/local/man. Besides
the snort man page, documentation and setup guides can be found at
http://www.snort.org/documentation.html.

Nessus, a network-scanning vulnerability detector, is one of my favorite tools and
with a little coaxing you can install it on Mac OS X. Nessus requires the GTK
and openssl libraries and headers be installed. Apple ships X with openssl (it is
required by OpenSSH), but not its headers. I used fink to get these two
packages, among others, and then copied all l ibraries and headers to
/usr/local/lib and /usr/local/include, respectively. I compiled the latest stable
version, 1.2.1, by simply issuing “./configure ; make ; make install” in the untarred
Nessus directories in the appropriate order (nessus-libraries, libnasl, nessus-
core, and then nessus-plugins).

Tools written in Perl should also have little problem running on Mac OS X. Mac
OS X ships with Perl, but administrators will likely have to download additional
Perl modules to get some Perl tools running. Good examples of useful Perl
auditing tools are swatch, a logfile watcher, and whisker, a CGI vulnerability
scanner.

Many other security tools are available for Mac OS X. Anything that will compile
on other BSD distributions stands a chance of compiling under Mac OS X.
Below I include links to the developers of the tools mentioned above and a few
others. This list is not intended to be complete, but merely a starting point for
your own research.

©
 S

A
N

S
In

st
itu

te
 2

00
2,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2002, As part of the Information Security Reading Room. Author retains full rights.

Fink, UNIX software for your Mac
http://www.sourceforge.net/projects/fink
tcpdump and libpcap
http://www.tcpdump.org/
Snort, an intrusion detection system
http://www.snort.org
Nessus, a vulnerability scanner
http://www.nessus.org
Ethereal, a network sniffer and traffic analyzer
http://www.ethereal.com/
ettercap, a network sniffer for switched LANs
http://ettercap.sourceforge.net/
Whisker, a CGI vulnerability scanner
http://www.wiretrip.net/rfp/p/doc.asp/i2/d21.htm
Psionic PortSentry
Note: PortSentry 1.1 includes an “osx” build target that works without error, but
2.0b1 will not build on Mac OS X/Darwin
http://www.psionic.com/products/
Osiris, a file integrity checker
http://osiris.shmoo.com/
swatch, a logfile watcher
http://www.oit.ucsb.edu/~eta/swatch/

Useful Security sites

Computer security is not a destination but a journey. Administrators must make
themselves as aware as possible of both existing and arising issues. The
entirety of this paper was researched using the Internet and experimentation on
my Macintosh. In addition to the many links I have already provided above and
those provided by Patrick Harris (30), and updated by Roland E. Miller, III (40), I
would encourage Mac OS X administrators to add the security sites below to
their cache of Internet security resources.

CERT Coordination Centerhttp://www.cert.org
Packet Storm http://www.packetstormsecurity.org
Security Focus http://www.securityfocus.com/
Rain Forest Puppy: http://www.wiretrip.net/rfp/
#RootPrompt.org http://rootprompt.org/
Security Geeks http://securitygeeks.shmoo.com/

Conclusions

Mac OS X is fairly secure out-of-the-box. Apple has disabled all inetd-launched

©
 S

A
N

S
In

st
itu

te
 2

00
2,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2002, As part of the Information Security Reading Room. Author retains full rights.

daemons and it is the province of administrators to enable any needed services.
Apple has conveniently configured inetd.conf to wrap daemon requests with TCP
wrappers, but administrators must create hosts.allow and hosts.deny files. Mac
OS X’s portmap daemon makes libwrap calls and uses these configuration files.
As of Mac OS X 10.0.1, Apple includes OpenSSH and the Sharing preference
panel enables sshd rather than telnetd. Apple ships Mac OS X with the root
account disabled and provides sudo for more fine-grained privilege control than
the su/group wheel scheme. Apple includes IP firewall, the packet-filtering
firewall used by other BSD distributions. The Software Update preference pane
provides a simple and schedulable method to check for system software
updates. Apple provides a utility to set an Open Firmware password—a
modification that prevents most methods of circumventing filesystem protection
mechanisms.

Apple has some work to do, however, to make Mac OS X more secure. They
should provide a mechanism to hide password hashes and other sensitive data
from unprivileged processes and users. Mac OS X needs a mechanism to
enforce strong password creation. They should adopt more computationally-
intensive password hash algorithms like MD5 and Blowfish. Apple should also
re-evaluate which included programs require root privileges through the use of
the SUID and SGID mechanisms.

The responsibility for implementing some security measures must fall upon
system administrators. They should determine whether the type/creator code
document-to- application association scheme is needed and, if not, reinstall Mac
OS X on a UFS volume. They should set an Open Firmware password.
Administrators should disable both automatic login and the display of usernames
in the login window. They should lock the cases of Macintoshes. They should
get authorization to perform password-strength auditing and schedule regular
password audits. To restrict access to network daemons, administrators should
both create the TCP wrapper configuration files hosts.allow and hosts.deny and
configure firewall rules for IP firewall. Software Update should be scheduled to
check for system updates daily instead of the default weekly interval. A final
measure that administrators may take is to install open-source security tools (e.g.
intrusion detection systems like Snort or PortSentry). UNIX administrators given
charge of Mac OS X systems will appreciate that many popular open-source
security and security-auditing tools are available for Mac OS X.

The introduction of Mac OS X version 10.0 seemed rushed and more driven by
the need to get the product out the door, before it was feature complete. Mac OS
X 10.1 delivers the feature-complete version that should have been released as
version 10.0. I am confident that Apple’s developers will now shift their focus
more toward refinement and, hence, the improvement of Mac OS X’s security.
Apple has said that Jaguar, the next version of Mac OS X, will include BSD
updates, IPSec integration, and a VPN client. There may be other updates that
are not “buzzwordthy,” and we can hope that Jaguar will bring X closer to par

©
 S

A
N

S
In

st
itu

te
 2

00
2,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2002, As part of the Information Security Reading Room. Author retains full rights.

with its BSD Brethren in terms of security.

References

1. Anguish, Scott. “Building OpenSSH 3.0.2 on Mac OS X 10.1.1.” 9 Mar. 2002.
URL: http://www.stepwise.com/Articles/Workbench/2001-12-17.01.html (5 June
2002).

2. Anguish, Scott. “Mac OS X 10.1 Local Security Exploit.” 20 Oct. 2001. URL:
http://www.stepwise.com/Articles/Admin/2001-10-15.01.html (5 June 2002).

3. Apple Computer, Inc. “A look inside Jaguar.” URL:
http://www.apple.com/macosx/newversion (3 June 2002).

4. Apple Computer, Inc. “An Introduction to Mac OS X Security.” URL:
http://developer.apple.com/internet/macosx/securityintro.html (5 June 2002).

5. Apple Computer, Inc. “Macintosh: How to Use FireWire Target Disk Mode.” 20
May 2002. URL: http://docs.info.apple.com/article.html?artnum=58583 (5 June
2002).

6. Apple Computer, Inc. "Mac OS X 10.0: AirPort Does Not Work From UFS
Partition." 21 Mar. 2002. URL:
http://docs.info.apple.com/article.html?artnum=106252 (5 June 2002).

7. Apple Computer, Inc. "Mac OS X 10.0: Choosing UFS or Mac OS Extended
(HFS Plus) Formatting." 9 May 2002. URL:
http://docs.info.apple.com/article.html?artnum=25316 (5 June 2002).

8. Apple Computer, Inc. "Mac OS X 10.0: Classic Does Not Work From a UFS
Disk on First Use." 1 Jun. 2001. URL:
http://docs.info.apple.com/article.html?artnum=106277 (5 June 2002).

9. Apple Computer, Inc. "Mac OS X 10.0: Startup Volume Is Named '/' Instead of
'Mac OS X.'" 21 Mar. 2001. URL:
http://docs.info.apple.com/article.html?artnum=106191 (5 June 2002).

10. Apple Computer, Inc. “Mac OS X 10.1: Binding Local NetInfo Database to an
NIS Domain.” 2 Nov. 2001. URL:
http://docs.info.apple.com/article.html?artnum=106499 (5 June 2002).

11. Apple Computer, Inc. “Mac OS X 10.1: How to Set up Open Firmware
Password Protection.” 22 Feb. 2002. URL:
http://docs.info.apple.com/article.html?artnum=106482 (5 June 2002).

©
 S

A
N

S
In

st
itu

te
 2

00
2,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2002, As part of the Information Security Reading Room. Author retains full rights.

12. Apple Computer, Inc. "Mac OS X: How to Change or Reset a User's
Password." 25 Mar. 2002. URL:
http://docs.info.apple.com/article.html?artnum=106156 (5 June 2002).

13. Apple Computer, Inc. “Mac OS X Server 1.x: About Security With Mac OS X
Server.” 13 July 2001. URL:
http://docs.info.apple.com/article.html?artnum=60112 (5 June 2002).

14. Apple Computer, Inc. “Mac OS X Server 1.x: Lookupd Release Notes.” 28
Nov. 2001. URL: http://docs.info.apple.com/article.html?artnum=24902 (5 June
2002).

15. Apple Computer, Inc. "Mac OS X: Sherlock Cannot Open Enclosing Folder
on UFS or NFS Volume." 13 Feb. 2002. URL:
http://docs.info.apple.com/article.html?artnum=106739 (5 June 2002).

16. Apple Computer, Inc. “Open Firmware Password 1.0.2: Information and
Download.” 22 Feb 2002. URL:
http://docs.info.apple.com/article.html?artnum=120095 (5 June 2002).

17. Arentz, Stefan. “Building your own personal firewall.” 9 Oct. 2000. URL:
http://wopr.norad.org/articles/firewall/ (5 June 2002).

18. Arentz, Stefan. “Mac OS X – Apache & Case Insensitive Filesystems.” 10
June 2001. URL: http://www.shmoo.com/mail/bugtraq/jun01/msg00098.shtml (5
June 2002).

19. Bertram McGrath. “Securing FreeBSD Under Mac OS X.” 30 Sept. 2001.
URL: http://rr.sans.org/mac/freebsd.php (5 June 2002).

20. blb. “Missing libpcap headers.” 14 Sept. 2001. URL:
http://www.macosxhints.com/article.php?story=2001091304413237#comments
(5 June 2002).

21. CodeSamurai. “Open Firmware Password Protection.” URL:
http://www.securemac.com/openfirmwarepasswordprotection.php (5 June 2002).

22. Cote, Daniel. “Setting up firewall rules on Mac OS X 10.1.” 8 Jan. 2002. URL:
http://www3.sympatico.ca/dccote/firewall.html (5 June 2002).

23. Curator and The Shmoo Group. “An Unofficial Xinetd Tutorial.” URL:
http://www.macsecurity.org/resources/xinetd/tutorial.shtml (5 June 2002).

24. Dino Amato, “adduser_OSX for MacOSX v1.1.” 30 June 2001. URL:
http://www.brownnut.com/adduser_OSX.htm (5 June 2002).

©
 S

A
N

S
In

st
itu

te
 2

00
2,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2002, As part of the Information Security Reading Room. Author retains full rights.

25. Faby, Aaron. “Apple NetInfo Network Management System.” 18 Oct. 2000.
URL: http://www.aaronfaby.com/NetInfo.rtf (5 June 2002).

26. Freaks’ Macintosh Archive. “Cracking [k] modified.” URL:
http://freaky.staticusers.net/crack.shtml (5 June 2002).

27. Freaks’ Macintosh Archive. “Newest Files, Updated and News.” URL:
http://freaky.staticusers.net/prevupdate-3.shtml (5 June 2002).

28. Griffiths, Rob. “Enabling the root password (three ways).” 24 Mar. 2001. URL:
http://www.macosxhints.com/article.php?story=20010324095804436 (5 June
2002).

29. Grungie. “Macintosh Hacker’s Workshop.” URL:
http://grungie.code511.com/MHW_11_Doc/index.html (5 June 2002).

30. Harris, Patrick. “Macintosh Internet Security Basics.” 15 Sept. 2000. URL:
http://rr.sans.org/mac/mac_sec.php (5 June 2002).

31. Hill, Brian R. “Authentication and Authorization using the Security
Framework.” 28 May 2001. URL:
http://www.stepwise.com/Articles/Technical/2001-03-26.01.html (5 June 2002).

32. Jan Verhoog, Gert. “Setting up a network of ‘thin’ Mac OS X clients.”
Revision: 1.1.1.1. 12 Feb. 2002. URL:
http://www.phil.uu.nl/~gjv/comp/thinosx/thinosx.html#ChangeThePermissionsOfT
heNITools (5 June 2002).

33. Kershaw, Michael. "Linux 802.11b and wireless (in)security." 4 Mar. 2002.
URL:
http://www.linuxsecurity.com/feature_stories/wireless-kismet.html (5 June 2002).

34. Lavigne, Dru. “Adding a User to FreeBSD – Part Two.” 10 Jan. 2001. URL:
http://www.onlamp.com/pub/a/bsd/2001/01/10/FreeBSD_Basics.html (5 June
2002).

35. Lavigne, Dru. “BSD Firewalls: IPFW Rulesets.” 10 May 2001. URL:
http://www.onlamp.com/pub/a/bsd/2001/05/09/FreeBSD_Basics.html (5 June
2002).

36. Mahoney, Bob. “Welcoming MacOS X: An Example of Practical Threat
Assessment in a University Environment.” 18 June 2001. URL:
http://rr.sans.org/mac/macosx.php (5 June 2002).

37. Majka, Mark. “Re: nidump and passwd.” 20 June 2000. URL:
http://www.darwinfo.org/devlist.php3?number=521 (5 June 2002).

©
 S

A
N

S
In

st
itu

te
 2

00
2,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2002, As part of the Information Security Reading Room. Author retains full rights.

38. Malayter, Ryan. “[RC5] MacOS G4 AltiVec client in Beta.” 30 Nov. 1999.
URL: http://lists.distributed.net/hypermail/rc5.Nov1999/0128.html (5 June 2002).

39. Mate, Jeremy. “Sendmail on Mac OS X.” URL:
http://www.sial.org/sendmail/macosx/ (5 June 2002).

40. Miller III, Roland E. "Mac OS X 10.0 Security Essentials." 21 Aug. 2001.
URL:
http://rr.sans.org/mac/OSX_sec.php (5 June 2002)

41. Norvell, Preston. “Improving the Security of a Default Install of Mac OS X
(v10.1).” 5 Mar. 2002. URL: http://rr.sans.org/mac/default_install.php (5 June
2002)

42. Sanchez, Wilfredo. “The Challenges of Integrating Unix and the Mac OS
Environments.” Version. 1.10. 5 May 2002. URL:
http://www.mit.edu/people/wsanchez/papers/USENIX_2000/. (3 June 2002).

43. Sato, Hiroyuki. “_shadow_xxx does not work NetInfo on MacOS10.1.4.” 8
May 2002. URL: http://www.darwinfo.org/devlist.php3?number=16858 (5 June
2002).

44. Security Focus Online. “Apple Mac OS X nidump Password File Disclosure
Vulnerability.” 4 Sept. 2001. URL: http://online.securityfocus.com/bid/2953/info/
(5 June 2002).

45. sleight@shellyeah.org. “ni.patch.” URL: http://sleight.port5.com/dl/ni.patch (5
June 2002).

46. SolarfluX. “Changing the Default Password Encryption Algori thm.” 21 Mar.
2002. URL: http://bsdvault.net/sections.php?op=viewarticle&artid=89 (5 June.
2002).

47. Stratton, Jerry. “Compiling Crack on OS X.” URL:
http://cerebus.sandiego.edu/~jerry/UNIXTips/Crack.html (5 June 2002).

